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Abstract—Leveraging powerful deep learning techniques, the
end-to-end (E2E) learning of communication system is able to
outperform the classical communication system. Unfortunately,
this communication system cannot be trained by deep learning
without known channel. To deal with this problem, a genera-
tive adversarial network (GAN) based training scheme has been
recently proposed to imitate the real channel. However, the gra-
dient vanishing and overfitting problems of GAN will result in
the serious performance degradation of E2E learning of com-
munication system. To mitigate these two problems, we propose
a residual aided GAN (RA-GAN) based training scheme in this
paper. Particularly, inspired by the idea of residual learning, we
propose a residual generator to mitigate the gradient vanishing
problem by realizing a more robust gradient backpropagation.
Moreover, to cope with the overfitting problem, we reconstruct
the loss function for training by adding a regularizer, which
limits the representation ability of RA-GAN. Simulation results
show that the trained residual generator has better generation
performance than the conventional generator, and the proposed
RA-GAN based training scheme can achieve the near-optimal
block error rate (BLER) performance with a negligible compu-
tational complexity increase in both the theoretical channel model
and the ray-tracing based channel dataset.

Index Terms—End-to-end learning, generative adversarial
network (GAN), residual neural network, regularization.

I. INTRODUCTION

THROUGHOUT the history of wireless communications
from 1G to 5G, the fundamental wireless system design

paradigm remains unchanged, i.e., the whole complicated
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wireless system can be divided into multiple simpler individual
modules, such as source encoder, channel encoder, modula-
tor, demodulator, channel decoder, source decoder, etc. Based
on this modular design paradigm, the global optimization
of the whole communication system can be approximated
by the individual optimization of each module. However,
the optimization of each module doesn’t mean the global
optimization of the whole system [2], e.g., the separate design
of modulation and coding is known to be sub-optimal [3].
Thus, such a classical design paradigm becomes the bottleneck
that limits the globally optimal performance of the wireless
communication system.

To break through this bottleneck, the groundbreaking
paradigm of end-to-end (E2E) learning of communication
system has been recently proposed to jointly optimize the
whole system by leveraging powerful deep learning tech-
niques [2], [4]. It is well known that deep learning is usually
realized by using the multi-layer deep neural network (DNN),
in which the adjacent layers are connected by trainable
weights. For the E2E learning of communication system, the
transmitter and receiver are constructed by fully-connected
DNNs, both of which are trained by the standard backpropaga-
tion (BP) algorithm to update the trainable weights. In contrast
to the classical signal processing algorithms, which are usually
complex in wireless communication systems [5], deep learn-
ing based E2E learning can realize the modulation and other
functions by simple addition and multiplication operations
between each layer of the DNN [6]. Thus, the E2E learn-
ing of communication system could reach or even outperform
the conventional system with lower complexity [2], [7]–[11].

However, the E2E learning of communication system faces
a challenging problem, i.e., the transmitter cannot be directly
trained by the standard BP algorithm without known chan-
nel [4]. To be more specific, in the training process, for
the E2E learning of communication system, the transmitter
encodes the message by the transmitter DNN. After transmit-
ted through the channel, the received signal is decoded by
the receiver DNN. To train the DNNs, the receiver should
compute the loss function value, which represents the differ-
ence between the receiver output and the transmitted message.
After that, the weights of receiver and transmitter DNNs are
updated by the BP algorithm, which calculates the gradient of
each layer from the derivative of the loss function. The gradi-
ent could be obtained directly at the receiver. However, at the

2332-7731 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 14,2022 at 03:30:14 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-7304-2445
https://orcid.org/0000-0002-8845-3797
https://orcid.org/0000-0002-4250-7315
https://orcid.org/0000-0002-3731-9838
https://orcid.org/0000-0001-7832-5268


632 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 8, NO. 2, JUNE 2022

transmitter, the gradient is unavailable due to the unknown
channel, which blocks the computation of the derivative of
the loss function. Consequently, the transmitter could not be
trained, which prevents the practical realization of the E2E
learning of communication system [4].

A. Prior Works

To deal with the unknown channel in E2E learning of com-
munication system, different machine learning techniques and
architecture design approaches have been recently proposed in
the literature [4], [12]–[20]. In the pioneering work [4], a two-
phase training solution was proposed. In the first phase, the
E2E learning of communication system is trained by assum-
ing a stochastic channel model that is close to the behavior of
the practical channel. In the second phase, to compensate for
the mismatch of the assumed stochastic channel model and
the real channel, only the receiver part is finetuned by super-
vised learning. Unfortunately, the transmitter is unchangeable
in the second phase, which may limit the performance of the
system. To improve the system performance, some improved
two-phase schemes have been proposed to alternatively train
the transmitter and the receiver. These schemes can be gener-
ally divided into two categories, i.e., receiver aided schemes
and the channel imitation based schemes.

In the first category of receiver aided schemes [12]–[14], the
receiver will feedback some information to help the training
of the transmitter. Specifically, the simultaneous perturbation
stochastic optimization algorithm was used in [12] to update
the transmitter, and the deep learning technique was used
to generate gradient by utilizing the loss function fed back
from the receiver. Moreover, reinforcement learning (RL) was
utilized at the transmitter in [13], which regarded the loss
function value as a reward and the transmitter output as a
policy. Then, the transmitter DNN weights could be adjusted
according to the reward. However, the policy adaptability was
limited by the quantization level and feedback noise. In addi-
tion, from the perspective of information theory, [14] applied
a neural estimator to estimate the mutual information between
the transmitted signal and the received signal, and then opti-
mized the transmitter by maximizing this mutual information.
However, this work only considered the simplest case of addi-
tive white Gaussian noise (AWGN) channel, while the more
complex yet practical channel models have not been consid-
ered. Note that all schemes mentioned above require a large
amount of information transmitted from receiver to transmitter,
which increases the system burden.

In the second category of channel imitation based schemes,
instead of feeding back a large amount of information from
the receiver to the transmitter, some extra modules were added
in the system to imitate practical channels. Specifically, a gen-
erative adversarial network (GAN) was used in [15] to imitate
the real received signal. The GAN contains two parts: the gen-
erator and the discriminator, which are both implemented by
multi-layer DNNs. In the training process, the generator gen-
erated a fake received signal to approximate the distribution of
the real received signal, so that the transmitter could be trained
reliably through the generator and will not be blocked by the

unknown channel. At the same time, the discriminator was
used to train the generator to generate the signal as similar to
the distribution of the real received signal as possible. In this
way, the generator can imitate the real received signal, which
builds a bridge for the BP algorithm to calculate the gradient
for the transmitter. It was shown that this method can imitate
an arbitrary channel and reduce the hardware complexity of
transceiver [15], [17]–[20].

Unfortunately, there are two problems causing performance
degradation for this category of channel imitation based
schemes. Firstly, the gradient vanishing problem may happen
when training the transmitter through a multi-layer genera-
tor. Secondly, the overfitting problem usually occurs when a
mass of parameters are iteratively trained for the transmit-
ter, receiver, generator, and discriminator. These two problems
will result in a mismatch between the output of GAN and the
real received signal. Consequently, this mismatch will lead
to the serious performance degradation of E2E learning of
communication system.

B. Our Contributions

To address the gradient vanishing and overfitting problems
of the GAN-based training scheme in E2E learning of commu-
nication system, we propose a residual aided GAN (RA-GAN)
based training scheme by using the residual neural network
(Resnet) to change the layer structure of the generator.1 The
specific contributions of this paper can be summarized as
follows.

• Unlike the conventional generator in GAN to gener-
ate the received signal itself, we propose the RA-GAN
to generate the difference between the transmitted and
received signal. Specifically, we build a skip connection
that links the input and output layers of the generator
to decrease the number of layers from input to out-
put. Since this connection can provide an extra gradient,
the proposed RA-GAN is able to mitigate the gradient
vanishing problem.

• We reconstruct the loss function for the proposed RA-
GAN to solve the overfitting problem of conventional
GAN. Specifically, we introduce the l2 regularizer in the
loss function to limit the representation ability of the RA-
GAN based training scheme for the first time, which is
verified to have a better performance than other regular-
izers. Note that the increased computational complexity
after reconstructing the loss function is negligible com-
pared with simple addition and multiplication operations
in DNNs.

• Simulation results show that the proposed residual gen-
erator could generate a much more similar signal to
the real received signal than the conventional generator,
which verifies the better generation performance of the
residual generator. As a result, the RA-GAN based train-
ing scheme enables significant block error rate (BLER)
performance improvement in both the theoretical channel
model and the ray-tracing based channel dataset.

1Simulation codes are provided to reproduce the results in this paper:
http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html.
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Fig. 1. Architecture comparison between the classical communication system
and end-to-end learning of communication system.

C. Organization and Notation

The remainder of this paper is organized as follows.
Section II introduces the preliminaries for E2E learning of
communication system. Section III presents the proposed RA-
GAN based training scheme. Simulation results are shown
in Section IV. Finally, the conclusions are summarized in
Section V.

Notation: We denote the column vector by boldface lower-
case letters. CN (0, 1) is the standard complex Gaussian
distribution with mean 0 and variance 1. R

M
+ denotes M

dimensional positive real number. E{·} denotes the expecta-
tion. In denotes the identity matrix of size n. | · | and ‖ · ‖2
denote the number of weight parameter and l2 regularization,
respectively. For functions fx ∈ R

n and fy ∈ R
k with variable

x ,y ∈ R
m , ∂fy

∂fx
∈ R

k×n , ∂y
∂x ∈ R

m×m , and ∇x fx ∈ R
n×m

are their gradient matrices.

II. PRELIMINARIES FOR E2E LEARNING OF

COMMUNICATION SYSTEM

In this section, we will first introduce the principles of
E2E learning of communication system and the corresponding
problem caused by unknown channel. Then, we will show how
GAN could solve this problem, where the associated problems
of gradient vanishing and overfitting will be discussed.

A. The Principle of End-to-End Communication System

The architecture comparison between the classical commu-
nication system and E2E learning of communication system
is shown in Fig. 1. In the classical wireless communica-
tion system, the whole complicated system is divided into
multiple individual function modules such as source encoder,
channel encoder, modulator, channel, demodulator, channel
decoder, source decoder, etc. In contrast, the E2E learning
of communication system is only composed of three parts:
transmitter, channel, and receiver. Both transmitter T and
receiver R are implemented by multi-layer DNNs, with the

trainable weights denoted by θT and θR, respectively. Note
that the input information s to the transmitter is mapped
to a one-hot vector 1m , which is an M-dimensional vec-
tor taken from set M, where only the m-th element is one,
while the rest M − 1 elements are zeros. Then, the trans-
mitter acts as a function f θT

: M �→ C
n , which maps the

one-hot vector 1m to the signal x ∈ C
n to be transmitted

through n time slots. Correspondingly, the receiver acts as
a function f θR

:Cn �→ {p ∈ R
M
+ |∑M

i=1 pi = 1}, which maps
the received signal y ∈ C

n to a probability vector p ∈ R
M
+ .

The final decision of ŝ will correspond to the one-hot vec-
tor 1m̂ , where m̂ is the index of the maximal element in
the probability vector p. The block error rate is defined as
Pe = 1

M

∑
s Pr(ŝ �= s|s) [4], which denotes the average

error rate when transmitting the different message s. In
general, the transmitter hardware introduces the power con-
straint on the transmitted signal x, i.e., ‖x‖2 = 1. The
purpose of the transmitter-receiver is to recover the mes-
sage 1m as accurately as possible from the received signal
y = h • x + w, where h ∈ C

n is assumed as the block
fading channel. The channel coefficients in block fading chan-
nel change independently from one time slot to another. The
w ∈ C

n is Gaussian noise. In detail, the received signal
y = [y1, y2, . . . , yn ]

T at each time slot could be calcu-
lated by yi = hixi + wi , i = 1, 2, . . . ,n . Without loss of
generality, we consider the slow fading channel, where the
channel keep unchanged in n time slots, i.e., h = hi , i =
1, 2, . . . ,n . Correspondingly, we simplify the representation
of the received signal by y = hx+w. Moreover, the channel
could be denoted by conditional probability ph(y|x).

In order to get the optimal weights θ∗
T and θ∗

R for trans-
mitter and receiver, we should train the transmitter DNN
and receiver DNN. In the training process, the transmitted
information is known in receiver, which could be generated
by using the same random seed in transmitter and receiver.
Then, the difference between the transmitted one-hot vector
1m and the recovered probability vector p is measured by a
loss function [13] as follows:

L(θT , θR,H) � EH
{∫

l
(
f θR

(y), 1m
)
ph∈H

(
y|f θT

(1m )
)
dy

}

≈ 1

B

B∑
i=1

l
(
f θR

(
y(i)

)
, 1

(i)
m

)

=
1

B

B∑
i=1

l
(
p(i), 1

(i)
m

)
, (1)

where H = {h(1), . . . , h(B)} is the training set of the channel,

l(p, 1m ) = −
M∑

j=1

(1m )j ln pj +
(
1− (1m )j

)
ln
(
1− pj

)
(2)

is the cross-entropy (CE) loss function representing the dis-
tance between one-hot vector 1m and probability vector p, B is
the batch size (the number of training samples to estimate the
loss function). The p(i), y(i), and 1

(i)
m are the i-th probability

vector, received signal, and training sample, respectively. Next,
to update the weights θT and θR for transmitter and receiver
DNNs, the gradient of the loss function L(θT , θR,H) in (1)
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Fig. 2. GAN based training schme [15].

is required to be calculated by the classical BP algorithm.
However, from (1), only θR could be updated by applying the
gradient defined as follows:

∇θR L̃(θR) =
1

B

B∑

i=1

∇θR l
(
f θR

(
y(i)

)
, 1

(i)
m

)
, (3)

where L̃ is an approximation of the loss function, which could
be computed from (1). To fully exploit the performance of
E2E learning, the transmitter DNN weights θT also need to
be optimized [2]. However, the gradient ∇θT L̃ with respect
to θT is unavailable [4], since the unknown channel h blocks
the backpropagation procedure as follows:

∇θT L̃(θT ) =
1

B

B∑

i=1

∇θT l
(
f θT

(
y(i)

)
, 1

(i)
m

)

=
1

B

B∑

i=1

∂l

∂f θR

∂f θR

∂y(i)
∂y(i)

∂x(i)
∇θT f θT

(
1
(i)
m

)

=
1

B

B∑

i=1

h(i)
∂l

∂f θR

∂f θR

∂y(i)
In∇θT f θT

(
1
(i)
m

)
. (4)

To address this problem, a GAN based training scheme was
proposed in [15] to generate a surrogate gradient, which will
be discussed in the next subsection.

B. GAN Based Training Scheme

In order to update the transmitter DNN weights θT , a GAN
was used to produce the surrogate gradient [15] as shown
in Fig. 2, which could generate the signal as similar to the
real received signal as possible. Generally, a GAN contains a
generator G and a discriminator D, both of which are imple-
mented by multi-layer DNNs, with trainable weights denoted
by θG and θD , respectively. The generator f θG

: C2n �→ C
n

produces fake received signal ỹ ∈ C
n according to the trans-

mitted signal x ∈ C
n and random noise z ∈ C

n following
the standard Gaussian distribution. In order to imitate the ran-
domness of the channel, the random input z sampling from
a Gaussian distribution is required, which make the genera-
tor G produce different output after giving x. Accordingly, the
generator could produce a distribution that approximates the
real received signal distribution. At the same time, the dis-
criminator f θD

: Cn �→ (0, 1) is used to train the generator

to generate the signal as similar to the distribution of the real
received signal as possible.

The objective of the discriminator D is to accurately distin-
guish real and fake received signals. Particularly, if the input
data of the discriminator is the real received signal y, the
expected output of discriminator is 1. On the contrary, if the
input data is the fake received signal ỹ generated by the gener-
ator, the expected output is 0. For the generator G, in order to
generate a signal as similar to the real received signal as pos-
sible, its output ỹ must make the discriminator output f θD

(ỹ)
as close to 1 as possible. Based on the working procedure
of GAN discussed above, the generator weights θD and the
discriminator weights θG are alternately updated according to
the following two loss functions:

L̃(θD ) =
1

B

B∑

i=1

{
l
(
f θD

(
y(i)

)
, 1
)
+ l

(
f θD

(
ỹ(i)

)
, 0
)}

,

(5)

L̃(θG) =
1

B

B∑

i=1

l
(
f θD

(
f θG

(
x(i), z(i)

))
, 1
)
, (6)

where the function l(·) is defined similarly to (2). The dis-
criminator loss function (5) contains two items. Specifically,
the first item in braces of (5) denotes the loss function of
the real received input y, while the second item denotes the
loss function of the fake received input ỹ. Then, the gradi-
ents could be computed by ∇θG L̃(θG) and ∇θD L̃(θD ), and
Adam gradient descent algorithm [21] can be used to min-
imize the loss functions (5) and (6). The training process
will stop when GAN reaches the Nash equilibrium, i.e., when
the discriminator output is nearly 0.5, which means the real
and fake received signals can not be distinguished anymore.
Since the generator can be trained to imitate the real received
signal, the surrogate gradient as close to the expected gradi-
ent (4) as possible could be passed back through the link of
transmitter-generator-receiver as follows:

∇θT L̃(θT ) =
1

B

B∑
i=1

∇θT l
(
f θR

(
f θG

(
f θT

(
1
(i)
m

)
, z(i)

))
, 1

(i)
m

)

=
1

B

B∑
i=1

∂l

∂f θR

∂f θR

∂f θG

∂f θG

∂f θT

∇θT f θT

(
1
(i)
m

)

=
1

B

B∑
i=1

∂l

∂p(i)
∂p(i)

∂ỹ(i)
∂ỹ(i)

∂x(i)
∇θT f θT

(
1
(i)
m

)
, (7)

where the f θR
, f θG

, and f θT
are used to denote the output

of the receiver, generator, and transmitter, respectively. Due to
the different objectives for transmitter, receiver, generator, and
discriminator, the modules are iteratively trained, i.e., when
we train one module, the weights of other modules remain
unchanged.

However, it is well known that the training instability
problem that limits the performance of GAN [22]. Specifically,
in the GAN based training scheme of the E2E learning
of communication system, the gradient vanishing problem
happens in a multi-layer generator, which makes the trans-
mitter very difficult to be trained. Moreover, the overfitting
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problem always occurs because a mass of weights are iter-
atively trained for the transmitter, receiver, generator, and
discriminator, which makes the system weights easily over-
fit to the batch training data. These two problems will result
in a serious mismatch between the output of GAN and the
real received signal. Consequently, this mismatch will result
in the serious performance degradation of E2E learning of
communication system. To address the gradient vanishing and
overfitting problems of GAN based training scheme in E2E
learning of communication system, we will propose a resid-
ual aided GAN (RA-GAN) based training scheme to train the
transmitter indirectly in the next section.

III. RA-GAN BASED TRAINING SCHEME

The training of the transmitter is a challenging task because
of the unknown channel. According to the GAN based train-
ing scheme, a surrogate gradient is produced in (7) to update
the transmitter. However, the generator output distribution
p
h̃
(ỹ|x) is inconsistent with the real received signal distri-

bution ph(y|x) due to the gradient vanishing and overfitting
problems. Therefore, we propose an RA-GAN based training
scheme in this section to address these two problems.

A. Residual Learning to Mitigate Gradient Vanishing

In conventional GAN, the multi-layer generator always
feeds forward the variables layer-by-layer and feeds back
the gradients layer-by-layer. However, as the generator depth
increases, the gradient may become very small. This is caused
by the fact that the gradient is obtained by multiplying the
partial derivatives of loss functions layer-by-layer in the clas-
sical BP algorithm. If the value of the partial derivative is
close to 0, the final gradient to the transmitter will be very
small. This gradient vanishing problem makes it difficult to
train the transmitter through the multi-layer generator. Inspired
by the idea of residual learning [23], we intentionally con-
struct a skip connection between the input and output layers
of the generator, which is shown by the residual generator
in Fig. 3. For the residual generator, the residual generating
function f θRG

: Cn �→ C
n could be denoted by

f θRG
(x) = ỹ − x = f θG

(x)− x, (8)

where x and ỹ are transmitted and generated signals, respec-
tively, and f θRG

(x) is a residual generator aiming to learn the
difference between transmitted and received signals with the
conditional input x. The distribution of the difference between
transmitted and received signals is considered to be easier to
learn than the distribution of the received signal ph(y|x). For
AWGN channel, in which the real received signal is denoted
by y = x + n, the signal generated by residual generator f θRG
is expected to close to Gaussian noise, while the traditional
generator needs to approximate the whole received signal y.
The gradient in each iteration for the transmitter DNN can be
computed as:

∇θT L̃(θT ) =
1

B

B∑

i=1

∂l

∂f θR

∂f θR

∂f θG

∂f θG

∂f θT

∇θT f θT

(
1
(i)
m

)

Fig. 3. The residual generator in proposed RA-GAN.

=
1

B

B∑

i=1

∂l

∂f θR

∂f θR

∂f θG

∂f θRG

∂f θT

∇θT f θT

(
1
(i)
m

)

+
1

B

B∑

i=1

∂l

∂f θR

∂f θR

∂f θG

∇θT f θT

(
1
(i)
m

)

=
1

B

B∑

i=1

∂l

∂p(i)
∂p(i)

∂ỹ(i)

∂f θRG

(i)

∂x(i)
∇θT f θT

(
1
(i)
m

)

+
1

B

B∑

i=1

∂l

∂p(i)
∂p(i)

∂ỹ(i)
∇θT f θT

(
1
(i)
m

)
, (9)

where the f θR
, f θG

, f θRG
, and f θT

are used to denote the out-
put of the receiver, generator, residual generator, and transmit-
ter, respectively. The training method of proposed RA-GAN is
consistent with the traditional GAN [15]. Specifically, we use
the generated fake received signal ỹ and the real received sig-
nal y to train the discriminator of RA-GAN, and only used
the generated fake received signal ỹ to train the generator
of RA-GAN. Next, the receiver was only trained according
to the real received signal y, while the transmitter was only
trained according to the fake received signal ỹ. Among them,
the loss function for training the transmitter and receiver are
l(f θR

(ỹ), 1m ) and l(f θR
(y), 1m ), respectively. Note that (9)

is the gradient for updating the transmitter DNN weights of
the proposed RA-GAN based training scheme. There are two
items on the right side of (9). The first item is the same as
that (7), while the second item denotes the gradient through
the skip connection between the input and output layers of
the generator. Compared with the conventional GAN, the RA-
GAN could generate a extra gradient to efficiently train the
transmitter DNN due to the extra second item in (9), thus the
gradient vanishing problem could be mitigated. 2

It should be pointed out that for the RA-GAN based train-
ing scheme, only a small number of extra operations are
needed both in feedforward calculation and backpropagation
procedure due to the skip connection. Therefore, the extra
computational complexity for the residual generator is negligi-
ble compared with the addition and multiplication operations
for the conventional generator.

Different from the existing residual-based generator used in
image deblurring and image super-resolution [24]–[28], which

2To obtain the optimal gradient, the derivative
∂f

θR
G

∂f θT
is expected to close

the value of h(i) − 1, instead of ignoring this item. Thus, there is still a
difference here when compared with the optimal case after adding the residual
item. Specially, for the AWGN channel, i.e., h(i) = 1, since the derivative
∂f

θRG
∂f θT

is expected to zero, the residual generator could be omitted.
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Algorithm 1: RA-GAN Based E2E Training Scheme
Input:
1) Maximum number of iterations Epoch;
2) Real channel dataset H;
Output:

Trained transmitter and receiver DNNs weights θT and
θR;

1 Initialization:
M = 16, n = 7, B = 320, Ntrain = 10000,

δ2 = (
2Eb log2 M

N0n
)−1, λ = 0.01, Index = �Ntrain/B	;

2 Generate Ntrain training data samples at random;
3 Initialize weights θD , θG , θR, and θT according to the

Xavier initialization method [29];
4 for epoch = 1, 2, . . . ,Epoch do
5 for index = 1, 2, . . . , Index do
6 Take B one-hot vectors as training samples;
7 Caculate transmitted signals: x (1), . . . ,x (B);
8 Take B channel samples: h(1), . . . ,h(B);
9 Get real received signals: y (1), . . . ,y (B);

10 Generate fake received signals: ỹ (1), . . . , ỹ (B);
11 for i ∈ {D,G,R,T} do
12 Caculate the loss function L̂(θ i ) according to

(10);
13 Use ∇θi L̂(θ i ) to update θ i according to the

Adam method [21];
14 end
15 end
16 end
17 Return θR and θT .

mainly focus on making full use of the low-level information
by connecting with low layers to mitigate the gradient van-
ishing problem when training generator, the proposed residual
generator is utilized to solve the gradient vanishing problem
when training the transmitter. Moreover, compared to the com-
plex design of the residual structure in [24]–[28], the proposed
RA-GAN is more straightforward by building a link back to
the transmitter.

B. Regularization Method to Mitigate Overfitting

In this subsection, we reconstruct the loss function for the
E2E learning of communication system to mitigate the over-
fitting problem. As the generator and the discriminator in
GAN are added to train the E2E learning of communication
system, the representation ability will substantially increase
due to a mass of extra trainable DNN weights, which results
in the overfitting problem [30]. To be specific, when a mass of
parameters is iteratively trained for the transmitter T, receiver
R, generator G, and discriminator D, the residual generator is
easy to overfit to partial training channel data. This overfitting
problem results in residual generator performance degrada-
tion on other channel data. To limit the representation ability
of RA-GAN based training scheme, the regularizer is added
in the loss function. Compared to the existing GAN based

training scheme, the regularizer enables the RA-GAN based
training scheme to generate a signal as similar to the real
received signal as possible by using the regularization method.
Specifically, by adding a weight penalty item Ω(θ) in the orig-
inal loss function in (6) to restrict the representation ability of
RA-GAN, we have

L̂(θ i ) = L̃(θ i ) + λΩ(θ i ), i ∈ {R,T ,G,D}, (10)

where L̂(θ i ) and L̃(θ i ) are the reconstructed and original
loss functions, respectively, λ is the hyper-parameter to bal-
ance the penalty item and original loss function L̃(θ i ). R, T,
G, and D represent the receiver, transmitter, generator, and
discriminator in the RA-GAN based training scheme, respec-
tively. In this paper, we use l2 regularization 1

2‖θ ||2 as the
penalty item. Note that the l2 regularizer could achieve better
performance than the gradient penalty in WGAN loss and the
l1 for weight sparsity, by avoiding large weights in the E2E
system. The key procedures of the RA-GAN based training
scheme are described in Algorithm 1. Then, we aim to min-
imize the reconstructed loss function (10), which makes each
weight of θ i close to 0. Specifically, for a neural network
(NN), if the weights are large, a small noise of the input
data will have a great impact on the output results. But if
the weights are small enough, it doesn’t matter if the input
data is shifted a little bit by noise. It is generally considered
that the model with small weights values is relatively simple,
and avoids overfitting problem [30]. Finally, we will obtain a
well-trained residual generator without an overfitting problem,
which could have a good performance in most channel
data.

As we all know, the mode collapse always happens in the
GAN-based model in image processing and natural language
processing. However, we have not observed the problems
resulting from model collapse. The main reason is that the
distribution of image and text is more complicated than the
received signal distribution in the communication system.
Thus, the mode of the received signal is easier to generate
than image and text. Moreover, for the gradient vanishing
problem when training generator. Specifically, if the discrimi-
nator could completely distinguish between real and fake data,
i.e., f θD

(ỹ) = 0 and ∇ỹf θD
(ỹ) = 0, the gradients of the

loss function to train the generator are close to zeros, where
∇ỹf θD

(ỹ) = 0 denote the derivative of f θD
(ỹ) is 0 in the

neighborhood of ỹ. On the one hand, we use the regulariza-
tion method to make the discriminator D simple. On the other
hand, we use the less learning rate to train the discriminator
D, and make it convergence slowly. In the end, the matching
convergence rate between the discriminator D and generator
G could be obtained to avoid the gradient vanishing problem
when training the generator.

Note that the penalty item Ω(θ i ) in (10) only introduces
limited operations when we compute the new loss function
and gradient in each iteration. The computational complexity
after reconstructing the loss function is O(|θD |+|θG |+|θR|+
|θT |), where |θ | denote the number of weights in θ . This
increased complexity is still negligible compared with addition
and multiplication operations in multi-layer DNN.
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TABLE I
SYSTEM PARAMETERS IN RA-GAN BASED TRAINING SCHEME

IV. SIMULATION RESULTS

In this section, we investigate the performance of the
proposed RA-GAN based training scheme in terms of block
error rate (BLER) for data transmission in the AWGN channel,
Rayleigh channel, and DeepMIMO channel dataset based on
ray-tracing [31], respectively.3 We compare the performance
of the indirect RA-GAN based training scheme with indirect
RL [13], indirect GAN based training scheme [15], indirect
WGAN based training scheme [20], and the direct optimal
training method with known channel. In the direct optimal
training method, we assume the real channel are known at the
transmitter, which makes the gradient ∇θT L̃ available to train
the transmitter DNN. In addition, we analyze the ability of
RA-GAN to generate a fake received signal and compare it
with GAN. The layouts of the transmitter, receiver, genera-
tor, and discriminator are described in Table I. Moreover, the
parameter Eb/N0 denotes the ratio of energy per bit (Eb) to
the noise power spectral density (N0), and the noise power
δ2 equals to (

2Eb log2 M
N0n

)−1 [2]. Expect the neural network
dimension is shown in Table I, the training hyper-parameters
are set as: weight decay λ = 0.01, the maximum number
of iteration Epoch = 200, and the learning rate to train the
transmitter and receiver is 0.001. Specifically, for AWGN and
Rayleigh fading channel model, the learning rate to train the
generator and discriminator are 0.0005 and 0.0001, respec-
tively, and the batch size B = 320. For the DeepMIMO channel
model, due to the complex distribution of DeepMIMO, the
learning rate to train the generator and discriminator are set as
0.00005 and 0.00001, respectively, and the batch size B = 640,
to reduce the speed of the training model and make the model
converge better.

A. Generation Capability Comparison Between RA-GAN
and GAN

At first, we compare the generation performance of the
conventional GAN and the proposed RA-GAN for training
the E2E communication system. Specifically, we consider
the reconstructed loss function L̂(θR), L̂(θT ) in (10) for
RA-GAN based training scheme and the original loss function
L̃(θR), L̃(θT ) in GAN based training scheme. As mentioned

3It’s worth noting that the proposed RA-GAN based training scheme is still
suitable for non-linear channels, such as optical fiber channel [32].

Fig. 4. Generation performance comparison between the conventional GAN
and the proposed RA-GAN.

in Section II-B, the motivation of introducing RA-GAN and
GAN is to generate a signal as similar to the real received
signal as possible, i.e., the loss functions to train the trans-
mitter DNN should be very close and consistent with the loss
function to train the receiver DNN.

In Fig. 4, we show the values of the corresponding loss
functions against the training epoch in the AWGN channel, in
which the received signal y can be expressed as y = x + w,
where x and w are the transmitted signal and Gaussian noise,
respectively. The system is trained at Eb/N0 = 6 dB. We
can observe that the original loss function L̃(θT ) in the GAN
based training scheme can not converge, and it is not close to
the L̃(θR). This result is caused by the gradient vanishing and
overfitting problems. On the contrary, the reconstructed loss
functions L̂(θT ) and L̂(θR) in the proposed RA-GAN based
training scheme are very stable, and they converge faster than
the original loss functions L̃(θT ) and L̃(θR). Note that in
the training process, there are still some bad points due to the
randomness of training, but the bad points could recover in the
next epoch. The gap between L̂(θR) and L̂(θT ) is equal to
the gap between the penalty item λΩ(θR) and λΩ(θT ). Thus,
compared with the existing GAN based training scheme, the
proposed RA-GAN based training scheme could generate a
much more similar signal to the real received signal, which
shows that the trained residual generator has better generation
performance than the conventional generator.

B. BLER Performance in the AWGN Channel

Next, we compare the performance of the RA-GAN based
training scheme, GAN based training scheme [15], the RL
based training scheme [13], and the optimal training method
in the AWGN channel.4 The training parameters are the same
as those in Section IV-A. As mentioned in Section III-A, the
residual generator just needs to generate Gaussian output. This
is simple to realize by scaling the standard Gaussian input z.

4There is no channel estimation module [33] to estimate the channel coef-
ficient in E2E communication system. So, we verify the performance of the
proposed RA-GAN based training scheme and other training schemes in the
AWGN channel model and other channel models without known channel.
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Fig. 5. BLER performance comparison in the AWGN channel.

To compare the performance of different training schemes
in larger Eb/N0 scope as done in [2], we test the BLER
performance with a validation dataset including 100,000 ran-
dom one-hot vectors from −7 dB to 13 dB. As shown in
Fig. 5, we can observe that the BLER performance gap
between the existing GAN based training scheme [15] and
the optimal training scheme with known channel is large. This
large performance gap is caused by the gradient vanishing and
overfitting problems when training GAN. On the contrary, the
proposed RA-GAN based training scheme almost approaches
the optimal training method.

C. BLER Performance in the Rayleigh Fading Channel

In this subsection, we consider the Rayleigh fading chan-
nel h ∼ CN (0, 1). The receiver signal y could be denoted by
y = hx + w. Unlike the AWGN channel, some known pilot
signals xp are transmitted to help to train the E2E learning
of communication system in the Rayleigh fading channel and
DeepMIMO channel. The received pilot signal yp concate-
nate with received data signal y as the input of receiver and
discriminator of RA-GAN, GAN, and WGAN.

In Fig. 6, we show the BLER performance of RA-GAN
based training scheme compared with GAN based training
schemes [15] and RL based training schemes [13] in Rayleigh
fading channel. We train the system at Eb/N0 = 16 dB, and
double the input dimension of the receiver and RA-GAN due
to the use of the pilot. We observe that the RA-GAN based
training scheme outperforms the RL, WGAN, and GAN based
training schemes, e.g., the proposed RA-GAN based train-
ing scheme outperforms the GAN based training scheme by
3 dB when the BLER is 0.1. Since the WGAN is designed to
solve the mode collapse problem which doesn’t appear in E2E
training, compared to the GAN method, WGAN based train-
ing scheme only achieves smaller performance improvement.
When Eb/N0 is lower than 15 dB, the BLER performance of
RA-GAN based training scheme could almost overlap with the
optimal training method. When Eb/N0 is greater than 16 dB,
the BLER performance of the proposed RA-GAN based train-
ing scheme cannot approach the optimal training method. This

Fig. 6. BLER performance comparison in the Rayleigh fading channel.

TABLE II
THE DEEPMIMO DATASET SIMULATION PARAMETERS

is caused by the fact that the regularizer will limit the represen-
tation ability of the E2E learning of communication system. If
we decrease the hyper-parameter λ in (10), the optimal BLER
performance will be achieved, but the BLER performance will
degrade in low Eb/N0 regions.

D. BLER Performance in the Ray-Tracing Based
DeepMIMO Dataset

To verify the performance of the proposed RA-GAN based
training scheme in the real channel, we use the DeepMIMO
channel dataset based on ray-tracing [31] to generate channel
samples which is more realistic than the simulated channel
model, e.g., the AWGN channel and the Rayleigh fading chan-
nel. By using Wireless InSite ray-tracing simulator [34], the
DeepMIMO channel dataset can capture the dependence on the
real channel environmental factors such as user location and
environment geometry and so on. One main advantage of the
DeepMIMO channel dataset is that the dataset could be com-
pletely defined by the parameters set and the 3D ray-tracing
scenario. In our simulations, the DeepMIMO channel data are
generated according to the parameters shown in Table II. This
DeepMIMO channel dataset contains the channels between the
BS 3 deployed with single-antenna antenna and single-antenna
users from Row 1 to Row 2751, which is divided into a train-
ing set and a validation set. The training set with 80% of
the data is used to train the E2E learning of communication
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TABLE III
TRAINING TIME COMPARISON (SEC)

TABLE IV
THE NUMBER OF WEIGHTS IN GENERATOR AND

DISCRIMINATOR, RESPECTIVELY

system, while the validation set with the rest 20% data is used
to test the system performance.

In Fig. 7, we show the BLER performance of RA-GAN
based training scheme compared with GAN based training
schemes [15] and RL based training schemes [13] in the
DeepMIMO channel dataset. The training Eb/N0 is 16 dB,
the batch size is 640, and the hyper-parameter λ is 0.005. We
can observe that the proposed RA-GAN based training scheme
outperforms the GAN and RL based training schemes, e.g.,
the proposed RA-GAN based training scheme outperforms the
GAN based training scheme by 2 dB when the BLER is 0.1.
Moreover, the proposed RA-GAN based training scheme can
mitigate the gradient vanishing and overfitting problems of
GAN, and thus achieve the near-optimal BLER performance.

E. Training Time and Complexity Analysis

We compare the training time of the methods for end-to-end
training in different channel models, as shown in Table III.
From this table, we can observe that the proposed RA-GAN
based training scheme requires only a little more time than the
GAN based training scheme. Although the RL based training
scheme has a shorter training time, it requires the transmitter to
transmit a large amount of extra signals for training. Moreover,
we also calculate the complexity of the GAN, RA-GAN, and
WGAN methods by comparing the number of weights in gen-
erator and discriminator, as shown in Table IV. Since the
residual connection does not increase the number of weights,
we can observe that the proposed RA-GAN based training
scheme and GAN based training scheme have the same amount
of weights, both of which realize lower complexity compared
with WGAN based training scheme.

F. BLER Performance in the Non-Linear Channel Model

Furthermore, we verify the performance of the proposed
RA-GAN based training scheme in a non-linear channel
model, i.e., optical fiber channel model. In an optical fiber
communication system, the Mach-Zehnder modulator (MZM)
is used to modulate electrical signals into optical signals in
the transmitter, while simple photodiodes (PDs) are used to

Fig. 7. BLER performance comparison in DeepMIMO channel dataset.

detect the intensity of the received optical field and perform
the opto-electrical conversion in the receiver [32]. Specifically,
the modulation process in the MZM modulator is modeled by
m(t) = 1+ejx(t), where x(t) is the t-th transmitted signal and
m(t) is the t-th modulated signal. Then, the modulated signal is
transmitted through optical fiber, where fiber dispersion affects
the signal quality. The fiber dispersion can be solved analyti-
cally in the frequency domain by taking the Fourier transform.
Thus, the FFT and IFFT are necessary for conversion between
the time and frequency domain, which can be realized by the
Torch library. Finally, the received intensity of the optical field
can be denoted by r(t) = |h{m(t)}|2+n(t), where h{·} is an
operator describing the effects of the fiber dispersion and n(t)
is the additive white Gaussian noise. As a consequence of the
joint effects of dispersion and intensity of the received opti-
cal field detection, the optical fiber communication channel is
nonlinear.

According to the optical fiber channel model introduced
above, we compare the performance of the RA-GAN based
training scheme, GAN-based training scheme, WGAN based
training scheme, the RL-based training scheme, and the
optimal training method in the optical fiber channel. We test
the BLER performance with a validation dataset including
100,000 random one-hot vectors. As shown in Fig. 8, we can
observe that the proposed RA-GAN based training scheme
outperforms the GAN and WGAN based training scheme,
which illustrates the proposed RA-GAN has a better ability to
characterize nonlinear channels. At the same time, RA-GAN
based method achieves the best BLER performance in the low
Eb/N0 area, while RA-GAN based method is still competitive
in the high Eb/N0 area.

V. CONCLUSION

In this paper, we proposed the RA-GAN based training
scheme for the E2E learning of communication system to
train transmitter without a known channel. Specifically, we
improved the surrogate gradient method by using residual
learning to transform the conventional GAN into RA-GAN
with a negligible increase in computational complexity. Based
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Fig. 8. BLER performance comparison in optical fiber channel.

on the proposed RA-GAN based training scheme, more pow-
erful and robust gradients can be achieved to solve the gradient
vanishing problem. Furthermore, a regularizer was utilized in
the RA-GAN to limit the representation ability, which can
solve the overfitting problem. Simulation results verified the
near-optimal BLER performance of the proposed RA-GAN
based training scheme, which outperforms other deep learn-
ing methods in the AWGN channel, Rayleigh fading channel,
and DeepMIMO channel dataset. For future research of E2E
learning of communication system, we will focus on how to
train the transmitter without a known channel in multiple-input
multiple-output (MIMO) and multi-user scenarios.
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